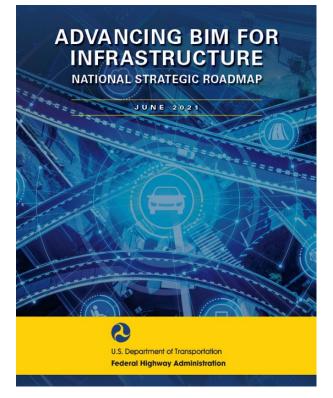


Aaron Costin, Ph.D., University of Florida, USA Marina Muller, Ph.D., Florida Gulf Coast University, USA

11th Linked Data in Architecture and Construction Workshop 15 - 16 June 2023

Agenda



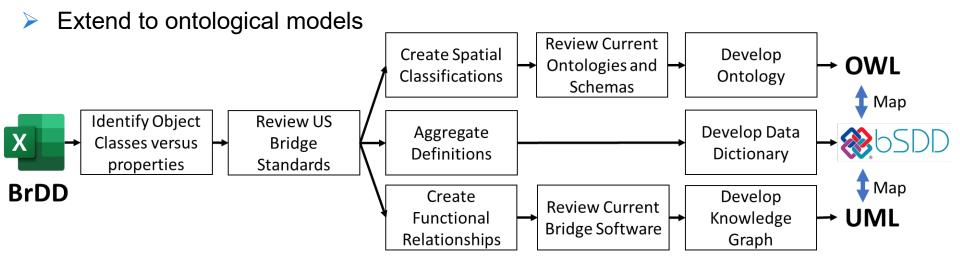
- Background and Motivation
- > Challenge
- Related Works
- Research Aim and Goals
- Proposed solution: Automated Data Dictionary Mapping
- > Open Challenge

Background and Motivation

- Push in the U.S. to define a national BIM for bridge and infrastructure standard
- Adoption industry foundation classes (IFC) as the standard data schema
 - for the exchange of electronic engineering data
- Coordinated effort to integration BIM and IFC into transportation workflows
- Need for a standard U.S. bridge and infrastructure knowledge base

Challenge

- Lack of a <u>consistent</u> U.S. bridge knowledge base
- Inconsistent and conflicting data
- Gap in industry experts and software/technical developers
- Coordination between the various efforts



	В	с	D
1			Reference
2	"A" Car	A motive-powered unit so designed that it may be used as the	c AASHTO, (2009).
- 3	"B" Car	A motive-powered unit designed primarily for use in combinati	o(AASHTO, (2009),
- 4	"C" Car	A self-propelled rail car that does not have a control cab (may) (2009). AASHTO, (2009).
5	3C Process	A process for planning transportation services that is required	
6	AASHTO	American Association of State Highway and Transportation C	
- 7	Abandonment	The relinquishment of the public interest in right-of-way or ac	
8	Abrasion	Loss of section or coating of a culvert by the mechanical action	or AASHTO, (2020).
9	abrasion	wearing or grinding away of material by friction; usually cause	
10	Abrasion	1) Loss of section or coating of a culvert by the mechanical ac	
11	Absolute Block	A block governed by the principle that no train shall enter the l	
12	Absolute Permissive	On a track that is signaled in both directions, the section betw	
13	absorption	the process of a liquid being taken into a permeable solid (e.g	
14	Absorption	1) The assimilation or taking up of water or other solutions by se	
15	Absorption Test	A test made to determine the absorption of concrete.	AASHTO, (2009).
16	Abstract of Title	A document showing the condensed history of the title to prop	
17	Abstraction	That portion of rainfall that does not become runoff. It include:	
18	Abutment	An end support for a bridge superstructure.	AASHTO, (2020).
19	Abutment	A structure that supports the end of a bridge span, and provid	
20	abutment	part of bridge substructure at either end of bridge which transl	
- 21	Abutment	The earth-retaining structure that supports the superstructure	
22	Accelerate Stop Distance	The distance required to accelerate an airplane to a specified	
23	Acceptance	Sampling and testing, or inspection, to determine the degree	
- 24	Acceptance Constant	The minimum allow able quality index.	AASHTO, (2009).
25	Acceptance Limit	In variable acceptance plans, the limiting upper or lower value	
26	Acceptance Number	In attribute acceptance plans, the maximum number of defec	
27	Acceptance Plan	An acceptable method of taking samples and making measur	
28		Sampling, testing, and the assessment of test results done to	
- 29		A method of analysis that requires no further verification and t	
- 30	Access	Permission, liberty, or ability to enter, approach, or to make us	е AASHTO (20Д9).

Research Aim and Goals

- Create a bridge and infrastructure data dictionary
- Single source of truth

Related Works – IFC

- IFC 4.3¹- multiple civil infrastructure updates
 - Limitations for full bridge representation
 - E.g., Only 10 defined spatial elements
- IFC for finite element analysis (FEA) (Shishlov et al. 2023)
- > 3D alignment expansion for railways (Kwon et al 2020)
- buildingSMART Data Dictionary (bSDD)²

¹ https://ifc43-docs.standards.buildingsmart.org/

² https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/

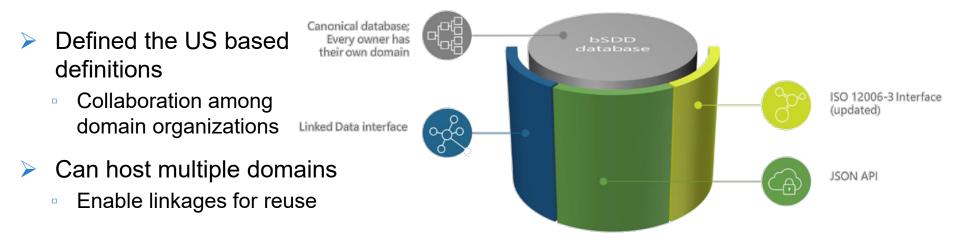
LDAC2023 Paper 1563-8

Related Works – Bridge Ontology

- BrMontology ontological knowledgebase for bridge maintenance (Ren et al. 2019)
- Bridge Ontology Architecture for Knowledge Management in Bridge Maintenance (Banujan and Vasanthapriyan (2020)
- Bridge Topology Ontology (BROT) (Hamdan et al. 2020)
 - Bridge Components Ontology (BRCOMP)
 - Building Material Ontology (BMAT)
 - Bridge Structure Ontology (BRSTR)
 - Bridge Classification Ontology (BRIDGE).
- > Ontology for bridge inspection (ASB-ING Ontology) (Göbels and Beetz 2021)

Data Dictionary

Centralized repository of information about data such as meaning, relationships to other data, origin, usage, and format¹


- Used to catalog and communicate the structure and content of data
- Provides meaningful descriptions for individually named data objects
- Gives context to the data being stored

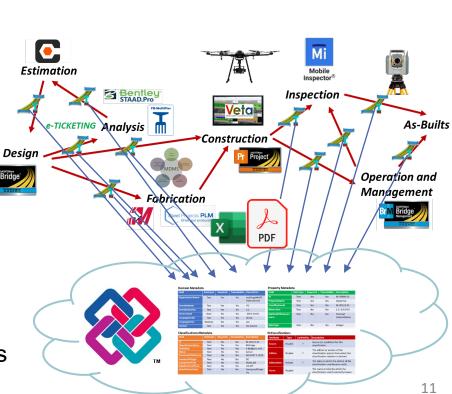
¹IBM Dictionary of Computing, McGraw-Hill Education - Europe; 10th edition (August 1, 1993) LDAC2023 Paper 1563-8

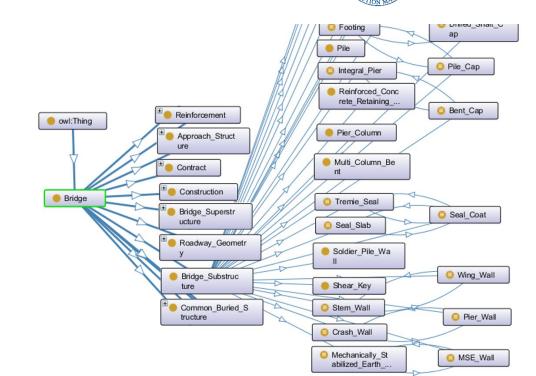
- Part of the buildingSMART International Data Dictionary (bSDD)
 - Incorporates the industry foundation classes (IFC) and other bSI technologies
 - Accepted internationally

via "Technical Roadmap buildinaSMART". April 2020

Data D)ictio			-	e: Br	idg	е	Data			dation for The Gaton
Domain Metadata		Owr	ners/Stewar	ds	Property M	etadata	i)-		ication	TION MARKEN SOD	
Field	DataType	Required	Translatable	Description	Field	1	DataType	Required	Translatable	Description	ernational nome of ope
OrganizationName	Text	Yes	No	buildingSMART	Id		Text	Yes	No	ifc-99088-01	
				International	PropertyNam	e	Text	Yes	Yes	IsExternal	
DomainName	Text	Yes	No	IFC	Classification	d	Text	Yes	No	ifc-00123-01	
DomainVersion	Text	Yes	No	2.2	Dimension		Text	No	No	10-20000	
/ersionDate	Date	No	No	2017-10-01	MethodOfMe	asure	Text	No	Yes	Thermal	
anguageCode	Text	Yes	No	de-DE	ment					transmittance	
anguageOnly	Boolean	Yes	No	yes							
icense	Text	No	No	No license	DataType		Text	No	No	integer	
Classifications Me	etadata	cla	arifications	Ç	lfcClassifica	tions	5-	Doma	iin specific d	ata	
ield	DataType	Required	Translatable	Description	Attribute	Туре	Cardina	lity Descrip	otion		
d	Text	Yes	No	ifc-00123-01	Source	lfcLabel	?	Source	e (or publisher)		
ClassificationName	Text	Yes	Yes	IfcBridge	Source	пстары	ŗ	classif	ification.		
Definition	Text	No	Yes	A Bridge is civil				The e	The edition or version of the		
Status DocumentReference	Text Text	No No	No No	Active ISO 6707 1 2014	Edition	IfcLabel	?		-	from which the	
CountryOfOrigin	Text	No	No	DE				classif	ication notatio	n is derived.	
CountriesOfUse	Text	No	No	EN;NL;DE	EditionDate	lfcDate	?			e edition of the	
SubdivisionsOfUse	Text	No	Yes	US-MT				classif	ication used be	came valid.	
ClassificationType	Text	No	No	ComposedPrope rty	Name	IfcLabel			ame or label by ication used is	which the normally known.	

LDAC2023 Paper 1563-8


Why the Data Dictionary?


- Defines the structure and the meaning of \succ concepts and terms
 - Ensures their consistent use by all stakeholders over the life cycle of a construction
- Efficient way to organize knowledge for subsequent retrieval
 - Querying the Semantic Web.
 - BIM and web-based context for the semantic annotation of model object
- Further enhance exchange and interoperability in data exchange scenarios

E UNIVERSITY

he Foundation for The Gator Nation

Issues with Current US Data

- Spatial hierarchy vs functional hierarchy
- Excel and PDF Based
- Missing Terms
- No national infrastructure classification system

UNIVERSITY of

The Foundation for The Gator Nation

How do we get there?

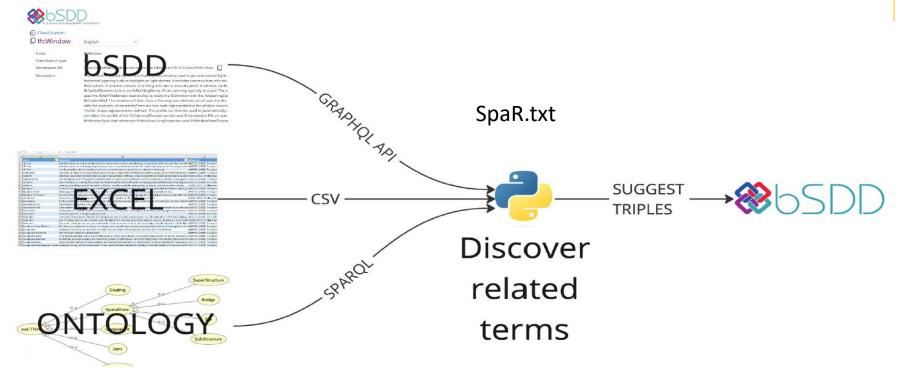
- Approach #1: Manual Mapping to bSDD
- Approach #2: Map the terminology to .owl then to bSDD
- Both have limitations and challenges
- Need an Automated Approach that goes bidirectional

Information Groups		Property	Property Set			-		Adjust B	SDD infor	mation			
Bridge Superstructur								sn	readshee	+			
	Bearing						•	- 26	reaustice				
		Anchor Bolt		St	heet1								
			Diameter		lieet.		1 - 1	-		1			
			Length	-	10 8	A Pridao Suporcta	B cture Sidewalk F	C	D				
			Location					Seneral Properties					
			Туре		12 E	Bridge Superstri	cture Sidewalk (Seneral Properties	Connected Elemen	its	Cros	te a cat of	
		General Properties	Type					Seneral Properties Seneral Properties			Crea	te a set of	
		General Properties	ID						General Properties		trans	formation	
			Connected By					Seneral Properties					
			Connected Elements					Seneral Properties Seneral Properties			rule	s in .json	
			Description					Seneral Properties			Contraction Contraction Contraction Contraction		
			Dimension		20 E	Bridge Superstri	cture Sidewalk (Seneral Properties	Туре			1	
			Identification	-			cture Sidewalk L		Length				
			Location	-			cture Sidewalk L		Location Width				
			Material	-									
			Quantity	Tran	sforma	tion Rules (C:\U	sers\marin\Onel	Drive - University	of Florida\Documen	ts\1post doc\test	5.json)		
			Туре	F			Duluta					- Lond Dula	
		Layout			Add	Edit	Delete					Load Rule	
									1	1			
			Bearing Spacing	V	1 5	Sheet Name	Start Column	End Columi	n Start Row	End Row		Rule	
			Bearing Spacing Centerline of Bearing Offset	V		Sheet Name	Start Column	A End Column	n Start Row	End Row	Class: @A*	Rule	
			Centerline of Bearing Offset		Sheet	1					Class: @A* Class: @B*	Rule	
		Properties	Centerline of Bearing Offset		Sheet	1	A	A	1			Rule - SubclassOf: @A*	
		Properties	Centerline of Bearing Offset Distance from Centerline of]	r r	Sheet	1	A	A	1			-	
		Properties	Centerline of Bearing Offset	nei (Sheet	vl:Thing Bridge	A	A B	1			-	

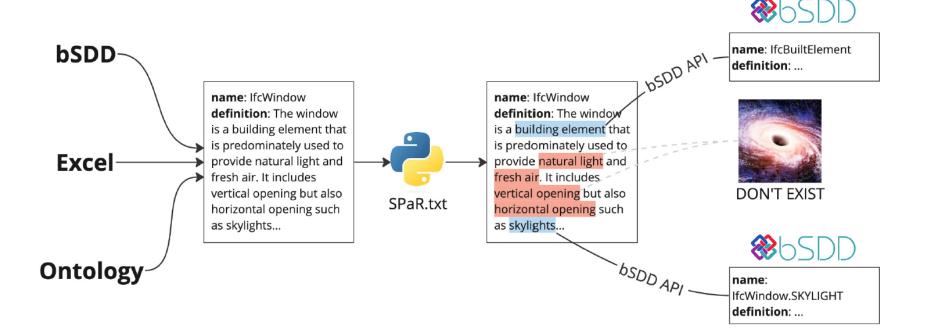
UNIVERSITY of

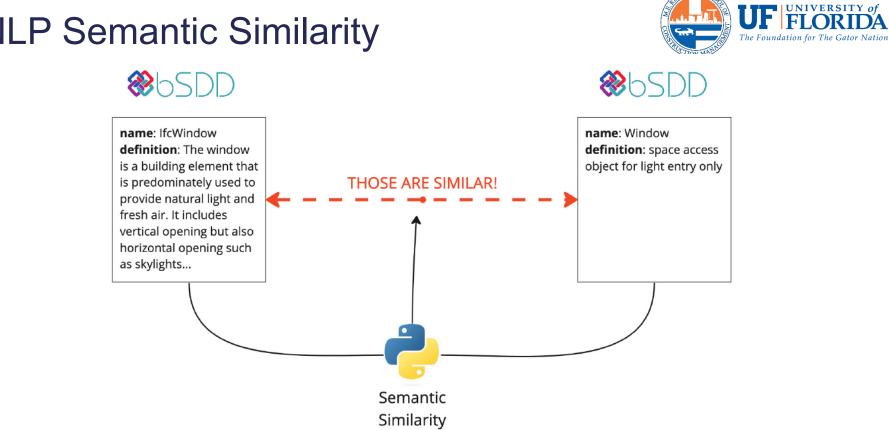
Research Update

- LDAC 2023 Hackathon
 - Artur Tomczak
 - Rueben Kruiper
 - Giulia Maslov
 - Rebekka Benfer
 - Aaron Costin
- Challenge: How to automate the linking to similar terms and properties



be aS Do Dos


Natural Language Processing (NLP)



NLP Term Search

NLP Semantic Similarity

Before

V

1

After

Classification	
IfcWall	English
Code	

lfcWall

Classification type

Class

Namespace URI

https://identifier.buildingsmart.org/uri/buildingsmart/ifc-4.3/class/lfcWall

Description

The wall represents a vertical construction that may bound or subdivide spaces. Wall are usually vertical, or nearly vertical, planar elements, often designed to bear structural loads. A wall is however not required to be load bearing.{.extDef}A wall may have openings, such as wall openings, openings used for windows or doors, or niches and recesses. They are defined by an IfcOpeningElement attached to the wall using the inverse relationship HasOpenings pointing to IfcRelVoidsElement. Walls with openings that have already been modeled within the enclosing geometry may use the relationship IfcRelConnectsElements to associate the wall with embedded elements such as doors and windows.There are two main representations for all occurrences:IfcWall

None Classification relations

(1) Classification		
🛛 IfcWall	English	~
Code		
IfcWall		
Classification type		
Class		
Namespace URI		
https://identifier.buil	dingsmart.org/uri/buildi	ngsmart/ifc-4.3/class/lfcWall

Description

The wall represents a vertical construction that may bound or subdivide spaces. Wall are usually vertical, or nearly vertical, planar elements, often designed to bear structural loads. A wall is however not required to be load bearing.(.extDef)A wall may have openings, such as wall openings, openings used for windows or doors, or niches and recesses. They are defined by an IfcOpeningElement attached to the wall using the inverse relationship HasOpenings pointing to IfcRelVoidsElement. Walls with openings that have already been modeled within the enclosing geometry may use the relationship IfcRelConnectsElements to associate the wall with embedded elements such as doors and windows. There are two main representations for all occurrences:IfcWall

Classification relations

URI https://identifier.buildingsmart.org/uri/buildingsmart/ifc- 4.3/class/lfeWindow	Name IfcWindow	Relation type HasReference
https://identifier.buildingsmart.org/uri/buildingsmart/ifc- 4.3/class/lfcDoor	lfcDoor	HasReference
https://identifier.buildingsmart.org/uri/molio/cciconstruction -1.0/class/L-QQA	Wall	equivalentClass

Open Challenges

- How best to organize the data?
- How best to determine modularity?
- How to store each stakeholder's data requirements?
- How best to automate the classes and properties?
- How to be bi-directional from the diagrams (industry knowledge) to .owl?

Thank you

Aaron Costin, Ph.D. aaron.costin@ufl.edu

LDAC2023 Paper 1563-8